Vitamin D Deficiency and Oral Health: A Comprehensive Review (2024)

1. Borel P., Caillaud D., Cano N.J. Vitamin D bioavailability: State of the art. Crit. Rev. Food Sci. Nutr. 2015;55:1193–1205. doi:10.1080/10408398.2012.688897. [PubMed] [CrossRef] [Google Scholar]

2. Holick M.F., Chen T.C. Vitamin D deficiency: A worldwide problem with health consequences. Am. J. Clin. Nutr. 2008;87:1080–1086. doi:10.1093/ajcn/87.4.1080S. [PubMed] [CrossRef] [Google Scholar]

3. Turck D., Bresson J.L., Burlingame B., Dean T., Fairweather-Tait S., Heinonen M., Hirsch-Ernst K.I., Mangelsdorf I., McArdle H.J., Naska A., et al. Update of the tolerable upper intake level for vitamin D for infants. EFSA J. 2018;16:1–118. [PMC free article] [PubMed] [Google Scholar]

4. Wilson L.R., Tripkovic L., Hart K.H., Lanham-New S.A. Vitamin D deficiency as a public health issue: Using Vitamin D2 or Vitamin D3 in future fortification strategies. Proc. Nutr. Soc. 2017;76:1–8. doi:10.1017/S0029665117000349. [PubMed] [CrossRef] [Google Scholar]

5. Jones G. The discovery and synthesis of the nutritional factor vitamin D. Int. J. Paleopathol. 2018;23:96–99. doi:10.1016/j.ijpp.2018.01.002. [PubMed] [CrossRef] [Google Scholar]

6. Holick M.F. Vitamin D deficiency. N. Engl. J. Med. 2007;357:266–281. doi:10.1056/NEJMra070553. [PubMed] [CrossRef] [Google Scholar]

7. Lanham-New S.A., Wilson L.R. Vitamin D—Has the new dawn for dietary recommendations arrived? Nutr. Bull. 2016;41:2–5. doi:10.1111/nbu.12185. [PubMed] [CrossRef] [Google Scholar]

8. Girgis C.M., Clifton-Bligh R.J., Hamrick M.W., Holick M.F., Gunton J.E. The roles of vitamin D in skeletal muscle: Form, function, and metabolism. Endocr. Rev. 2013;34:33–83. doi:10.1210/er.2012-1012. [PubMed] [CrossRef] [Google Scholar]

9. Morris H.A., Anderson P.H. Autocrine and paracrine actions of vitamin d. Clin. Biochem. Rev. 2010;31:129–138. [PMC free article] [PubMed] [Google Scholar]

10. Bikle D.D. Vitamin D and the immune system: Role in protection against bacterial infection. Curr. Opin. Nephrol. Hypertens. 2008;17:348–352. doi:10.1097/MNH.0b013e3282ff64a3. [PubMed] [CrossRef] [Google Scholar]

11. Bikle D.D. Vitamin D metabolism, mechanism of action, and clinical applications. Chem. Biol. 2014;21:319–329. doi:10.1016/j.chembiol.2013.12.016. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

12. Jeon S.M., Shin E.A. Exploring vitamin D metabolism and function in cancer. Exp. Mol. Med. 2018;50:20. doi:10.1038/s12276-018-0038-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

13. Kongsbak M., Levring T.B., Geisler C., von Essen M.R. The vitamin D receptor and T cell function. Front. Immunol. 2013;4:1–10. doi:10.3389/fimmu.2013.00148. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

14. Richard C.L., Farach-Carson M.C., Rohe B., Nemere I., Meckling K.A. Involvement of 1,25D3-MARRS (membrane associated, rapid response steroid-binding), a novel vitamin D receptor, in growth inhibition of breast cancer cells. Exp. Cell Res. 2010;316:695–703. doi:10.1016/j.yexcr.2009.12.015. [PubMed] [CrossRef] [Google Scholar]

15. McKenna M.J., Murray B. Vitamin D Deficiency. Springer; New York, NY, USA: 2014. [Google Scholar]

16. Hilger J., Friedel A., Herr R., Rausch T., Roos F., Wahl D.A., Pierroz D.D., Weber P., Hoffmann K. A systematic review of vitamin D status in populations worldwide. Br. J. Nutr. 2014;111:23–45. doi:10.1017/S0007114513001840. [PubMed] [CrossRef] [Google Scholar]

17. de Boer I.H. Chronic Kidney Disease, Dialysis, and Transplantation. Volume 357. Elsevier Saunders; Philadelphia, PA, USA: 2010. Vitamin D deficiency; pp. 115–127. [Google Scholar]

18. Mogire R.M., Mutua A., Kimita W., Kamau A., Bejon P., Pettifor J.M., Adeyemo A., Williams T.N., Atkinson S.H. Prevalence of vitamin D deficiency in Africa: A systematic review and meta-analysis. Lancet Glob. Health. 2020;8:e134–e142. doi:10.1016/S2214-109X(19)30457-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

19. Aguiar M., Andronis L., Pallan M., Högler W., Frew E. The economic case for prevention of population vitamin D deficiency: A modelling study using data from England and Wales. Eur. J. Clin. Nutr. 2019;74:825–833. doi:10.1038/s41430-019-0486-x. [PubMed] [CrossRef] [Google Scholar]

20. Alonso M.A., Mantecón L., Santos F. Vitamin D deficiency in children: A challenging diagnosis! Pediatr. Res. 2019;85:596–601. doi:10.1038/s41390-019-0289-8. [PubMed] [CrossRef] [Google Scholar]

21. White J.H. Vitamin D and human health: More than just bone. Nat. Rev. Endocrinol. 2013;9:623. doi:10.1038/nrendo.2013.75-c1. [PubMed] [CrossRef] [Google Scholar]

22. Fathi N., Ahmadian E., Shahi S., Roshangar L., Khan H., Kouhsoltani M., Maleki Dizaj S., Sharifi S. Role of vitamin D and vitamin D receptor (VDR) in oral cancer. Biomed. Pharmacother. 2019;109:391–401. doi:10.1016/j.biopha.2018.10.102. [PubMed] [CrossRef] [Google Scholar]

23. Gröber U., Kisters K. Influence of drugs on vitamin D and calcium metabolism. Dermatoendocrinology. 2012;4:158–166. doi:10.4161/derm.20731. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

24. Chapple I.L.C., Bouchard P., Cagetti M.G., Campus G., Carra M.C., Cocco F., Nibali L., Hujoel P., Laine M.L., Lingstrom P., et al. Interaction of lifestyle, behaviour or systemic diseases with dental caries and periodontal diseases: Consensus report of group 2 of the joint EFP/ORCA workshop on the boundaries between caries and periodontal diseases. J. Clin. Periodontol. 2017;44:S39–S51. doi:10.1111/jcpe.12685. [PubMed] [CrossRef] [Google Scholar]

25. Uwitonze A.M., Murererehe J., Ineza M.C., Harelimana E.I., Nsabimana U., Uwambaye P., Gatarayiha A., Haq A., Razzaque M.S. Effects of vitamin D status on oral health. J. Steroid Biochem. Mol. Biol. 2018;175:190–194. doi:10.1016/j.jsbmb.2017.01.020. [PubMed] [CrossRef] [Google Scholar]

26. Peres M.A., Macpherson L.M.D., Weyant R.J., Daly B., Venturelli R., Mathur M.R., Listl S., Celeste R.K., Guarnizo-Herreño C.C., Kearns C., et al. Oral diseases: A global public health challenge. Lancet. 2019;394:249–260. doi:10.1016/S0140-6736(19)31146-8. [PubMed] [CrossRef] [Google Scholar]

27. Watt R.G., Daly B., Allison P., Macpherson L.M.D., Venturelli R., Listl S., Weyant R.J., Mathur M.R., Guarnizo-Herreño C.C., Celeste R.K., et al. Ending the neglect of global oral health: Time for radical action. Lancet. 2019;394:261–272. doi:10.1016/S0140-6736(19)31133-X. [PubMed] [CrossRef] [Google Scholar]

28. Hujoel P.P. Vitamin D and dental caries in controlled clinical trials: Systematic review and meta-analysis. Nutr. Rev. 2013;71:88–97. doi:10.1111/j.1753-4887.2012.00544.x. [PubMed] [CrossRef] [Google Scholar]

29. Schroth R.J., Levi J.A., Sellers E.A., Friel J., Kliewer E., Moffatt M.E.K. Vitamin D status of children with severe early childhood caries: A case-control study. BMC Pediatr. 2013;13:174. doi:10.1186/1471-2431-13-174. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

30. Dietrich T., Joshipura K.J., Dawson-hughes B., Bischoff-ferrari H.A. Association between serum concentrations of 25-hydroxyvitamin D 3 and periodontal disease in the US population 1–3. Am. J. Clin. Nutr. 2004;80:108–113. [PubMed] [Google Scholar]

31. Scardina G.A., Messina P. Good oral health and diet. J. Biomed. Biotechnol. 2012;2012:1–8. doi:10.1155/2012/720692. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

32. White J.H. Vitamin D metabolism and signaling in the immune system. Rev. Endocr. Metab. Disord. 2012;13:21–29. doi:10.1007/s11154-011-9195-z. [PubMed] [CrossRef] [Google Scholar]

33. Ganesh M.L., Saravana Pandian K. Acceleration of tooth movement during orthodontic treatment-A frontier in orthodontics. J. Pharm. Sci. Res. 2017;9:741–744. [Google Scholar]

34. Martínez-Maestre M.A., González-Cejudo C., MacHuca G., Torrejón R., Castelo-Branco C. Periodontitis and osteoporosis: A systematic review. Climacteric. 2010;13:523–529. doi:10.3109/13697137.2010.500749. [PubMed] [CrossRef] [Google Scholar]

35. Foster B.L., Nociti F.H., Somerman M.J. The rachitic tooth. Endocr. Rev. 2014;35:1–34. doi:10.1210/er.2013-1009. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

36. D’Ortenzio L., Kahlon B., Peaco*ck T., Salahuddin H., Brickley M. The rachitic tooth: Refining the use of interglobular dentine in diagnosing vitamin D deficiency. Int. J. Paleopathol. 2018;22:101–108. doi:10.1016/j.ijpp.2018.07.001. [PubMed] [CrossRef] [Google Scholar]

37. Allgrove J. Physiology of calcium, phosphate and magnesium. Endocr. Dev. 2009;16:8–31. [PubMed] [Google Scholar]

38. Bergwitz C., Jüppner H. Regulation of phosphate homeostasis by PTH, Vitamin D, and FGF23. Annu. Rev. Med. 2010;61:91–104. doi:10.1146/annurev.med.051308.111339. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

39. Pike J.W., Meyer M.B. The Vitamin D receptor: New paradigms for the regulation of gene expression by 1,25-Dihydroxyvitamin D 3. Rheum. Dis. Clin. N. Am. 2012;38:13–27. doi:10.1016/j.rdc.2012.03.004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

40. Haussler M.R., Jurutka P.W., Mizwicki M., Norman A.W. Vitamin D receptor (VDR)-mediated actions of 1α,25(OH) 2 vitamin D 3: Genomic and non-genomic mechanisms. Best Pract. Res. Clin. Endocrinol. Metab. 2011;25:543–559. doi:10.1016/j.beem.2011.05.010. [PubMed] [CrossRef] [Google Scholar]

41. Pike J.W., Meyer M.B., Bishop K.A. Regulation of target gene expression by the vitamin D receptor—An update on mechanisms. Rev. Endocr. Metab. Disord. 2012;13:45–55. doi:10.1007/s11154-011-9198-9. [PubMed] [CrossRef] [Google Scholar]

42. Rosen C.J., Adams J.S., Bikle D.D., Black D.M., Demay M.B., Manson J.A.E., Murad M.H., Kovacs C.S. The nonskeletal effects of vitamin D: An endocrine society scientific statement. Endocr. Rev. 2012;33:456–492. doi:10.1210/er.2012-1000. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

43. Haussler M.R., Haussler C.A., Whitfield G.K., Hsieh J.C., Thompson P.D., Barthel T.K., Bartik L., Egan J.B., Wu Y., Kubicek J.L., et al. The nuclear vitamin D receptor controls the expression of genes encoding factors which feed the “ Fountain of Youth” to mediate healthful aging. J. Steroid Biochem. Mol. Biol. 2010;121:88–97. doi:10.1016/j.jsbmb.2010.03.019. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

44. Slavkin H.C., Hu C.C., Sakakura Y., Diekwisch T., Chai Y., Mayo M., Bringas P., Simmer J., Mak G., Sasano Y., et al. Gene expression, signal transduction and tissue-specific biomineralization during mammalian tooth development. Crit. Rev. Eukaryot. Gene Expr. 1992;2:315–329. [PubMed] [Google Scholar]

45. Schroth R.J., Lavelle C., Tate R., Bruce S., Billings R.J., Moffatt M.E.K. Prenatal vitamin D and dental caries in infants. Pediatrics. 2014;133:133. doi:10.1542/peds.2013-2215. [PubMed] [CrossRef] [Google Scholar]

46. Singleton R., Day G., Thomas T., Schroth R., Klejka J., Lenaker D., Berner J. Association of maternal Vitamin D deficiency with early childhood caries. J. Dent. Res. 2019;98:549–555. doi:10.1177/0022034519834518. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

47. Hollist B.W., Pittard W.B. Evaluation of the total fetomaternal vitamin d relationships at term: Evidence for racial differences. J. Clin. Endocrinol. Metab. 1984;59:652–657. doi:10.1210/jcem-59-4-652. [PubMed] [CrossRef] [Google Scholar]

48. Karras S.N., Fakhoury H., Muscogiuri G., Grant W.B., van den Ouweland J.M., Colao A.M., Kotsa K. Maternal vitamin D levels during pregnancy and neonatal health: Evidence to date and clinical implications. Ther. Adv. Musculoskelet. Dis. 2016;8:124–135. doi:10.1177/1759720X16656810. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

49. Nørrisgaard P.E., Haubek D., Kühnisch J., Chawes B.L., Stokholm J., Bønnelykke K., Bisgaard H. Association of high-dose vitamin d supplementation during pregnancy with the risk of enamel defects in offspring: A 6-year follow-up of a randomized clinical trial. JAMA Pediatr. 2019;173:924–930. doi:10.1001/jamapediatrics.2019.2545. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

50. Reed S.G., Miller C.S., Wagner C.L., Hollis B.W., Lawson A.B. Toward preventing enamel hypoplasia: Modeling maternal and neonatal biomarkers of human calcium homeostasis. Caries Res. 2020;54:55–67. doi:10.1159/000502793. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

51. Reed S.G., Voronca D., Wingate J.S., Murali M., Lawson A.B., Hulsey T.C., Ebeling M.D., Hollis B.W., Wagner C.L. Prenatal vitamin D and enamel hypoplasia in human primary maxillary central incisors: A pilot study. Pediatr. Dent. J. 2017;27:21–28. doi:10.1016/j.pdj.2016.08.001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

52. Tanaka K., Hitsumoto S., Miyake Y., Okubo H., Sasaki S., Miyatake N., Arakawa M. Higher vitamin D intake during pregnancy is associated with reduced risk of dental caries in young Japanese children. Ann. Epidemiol. 2015;25:620–625. doi:10.1016/j.annepidem.2015.03.020. [PubMed] [CrossRef] [Google Scholar]

53. Kassebaum N.J., Bernabé E., Dahiya M., Bhandari B., Murray C.J.L., Marcenes W. Global burden of untreated caries: A systematic review and metaregression. J. Dent. Res. 2015;94:650–658. doi:10.1177/0022034515573272. [PubMed] [CrossRef] [Google Scholar]

54. Petersen P.E. World Health Organization global policy for improvement of oral health—World Health Assembly 2007. Int. Dent. J. 2008;58:342–348. doi:10.1111/j.1875-595X.2008.tb00185.x. [PubMed] [CrossRef] [Google Scholar]

55. Selwitz R.H., Ismail A.I., Pitts N.B. Dental caries. Lancet. 2007;369:51–59. doi:10.1016/S0140-6736(07)60031-2. [PubMed] [CrossRef] [Google Scholar]

56. Conrads G., About I. Pathophysiology of dental caries. Monogr. Oral Sci. 2018;27:1–10. [PubMed] [Google Scholar]

57. Hemadi A.S., Huang R., Zhou Y., Zou J. Salivary proteins and microbiota as biomarkers for early childhood caries risk assessment. Int. J. Oral Sci. 2017;9:e1. doi:10.1038/ijos.2017.35. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

58. Yildiz G., Ermis R.B., Calapoglu N.S., Celik E.U., Türel G.Y. Gene-environment interactions in the etiology of dental caries. J. Dent. Res. 2016;95:74–79. doi:10.1177/0022034515605281. [PubMed] [CrossRef] [Google Scholar]

59. Rosier B.T., Marsh P.D., Mira A. Resilience of the oral microbiota in health: Mechanisms that prevent dysbiosis. J. Dent. Res. 2018;97:371–380. doi:10.1177/0022034517742139. [PubMed] [CrossRef] [Google Scholar]

60. Jágr M., Eckhardt A., Pataridis S., Foltán R., Myšák J., Mikšík I. Proteomic analysis of human tooth pulp proteomes—Comparison of caries-resistant and caries-susceptible persons. J. Proteom. 2016;145:127–136. doi:10.1016/j.jprot.2016.04.022. [PubMed] [CrossRef] [Google Scholar]

61. Zhou F., Zhou Y., Shi J. The association between serum 25-hydroxyvitamin D levels and dental caries in US adults. Oral Dis. 2020 doi:10.1111/odi.13360. [PubMed] [CrossRef] [Google Scholar]

62. Herzog K., Scott J.M., Hujoel P., Seminario A.L. Association of Vitamin D and dental caries in children Findings from the National Health and Nutrition Examination Survey, 2005–2006. J. Am. Dent. Assoc. 2016;147:413–420. doi:10.1016/j.adaj.2015.12.013. [PubMed] [CrossRef] [Google Scholar]

63. Kim I.J., Lee H.S., Ju H.J., Na J.Y., Oh H.W. A cross-sectional study on the association between vitamin D levels and caries in the permanent dentition of Korean children. BMC Oral Health. 2018;18:43. doi:10.1186/s12903-018-0505-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

64. Gupta A., Chhonkar A., Arya V. Comparison of Vitamin D level of children with severe early childhood caries and children with no caries. Int. J. Clin. Pediatr. Dent. 2018;11:199–204. doi:10.5005/jp-journals-10005-1511. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

65. Deane S., Schroth R.J., Sharma A., Rodd C. Combined deficiencies of 25-hydroxyvitamin D and anemia in preschool children with severe early childhood caries: A case-control study. Paediatr. Child Health. 2018;23:e40–e45. doi:10.1093/pch/pxx150. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

66. Guizar J.M., Muñoz N., Amador N., Garcia G. Association of alimentary factors and nutritional status with caries in children of leon, Mexico. Oral Health Prev. Dent. 2016;14:563–569. [PubMed] [Google Scholar]

67. Wagner Y., Heinrich-Weltzien R. Evaluation of an interdisciplinary preventive programme for early childhood caries: Findings of a regional German birth cohort study. Clin. Oral Investig. 2016;20:1943–1952. doi:10.1007/s00784-015-1685-z. [PubMed] [CrossRef] [Google Scholar]

68. Schroth R.J., Rabbani R., Loewen G., Moffatt M.E. Vitamin D and dental caries in children. J. Dent. Res. 2016;95:173–179. doi:10.1177/0022034515616335. [PubMed] [CrossRef] [Google Scholar]

69. Wójcik D., Krzewska A., Szalewski L., Pietryka-Michałowska E., Szalewska M., Krzewski S., Pels E., Beń-Skowronek I. Dental caries and Vitamin D 3 in children with growth hormone deficiency. Medicine. 2018;97:e9811. [PMC free article] [PubMed] [Google Scholar]

70. Akinkugbe A.A., Moreno O., Brickhouse T.H. Serum cotinine, vitamin D exposure levels and dental caries experience in U.S. adolescents. Community Dent. Oral Epidemiol. 2019;47:185–192. doi:10.1111/cdoe.12442. [PubMed] [CrossRef] [Google Scholar]

71. Gyll J., Ridell K., Öhlund I., Karlsland Åkeson P., Johansson I., Lif Holgerson P. Vitamin D status and dental caries in healthy Swedish children. Nutr. J. 2018;17:11. doi:10.1186/s12937-018-0318-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

72. Dudding T., Thomas S.J., Duncan K., Lawlor D.A., Timpson N.J. Re-examining the association between Vitamin D and childhood caries. PLoS ONE. 2015;10:e0143769. doi:10.1371/journal.pone.0143769. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

73. Kühnisch J., Thiering E., Heinrich-Weltzien R., Hellwig E., Hickel R., Heinrich J. Fluoride/vitamin D tablet supplementation in infants—Effects on dental health after 10 years. Clin. Oral Investig. 2017;21:2283–2290. doi:10.1007/s00784-016-2021-y. [PubMed] [CrossRef] [Google Scholar]

74. Altman H., Steinberg D., Porat Y., Mor A., Fridman D., Friedman M., Bachrach G. In vitro assessment of antimicrobial peptides as potential agents against several oral bacteria. J. Antimicrob. Chemother. 2006;58:198–201. doi:10.1093/jac/dkl181. [PubMed] [CrossRef] [Google Scholar]

75. Grant W.B. A review of the role of solar ultraviolet-B irradiance and vitamin D in reducing risk of dental caries. Dermatoendocrinology. 2011;3:193–198. doi:10.4161/derm.15841. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

76. Davidopoulou S., Diza E., Menexes G., Kalfas S. Salivary concentration of the antimicrobial peptide LL-37 in children. Arch. Oral Biol. 2012;57:865–869. doi:10.1016/j.archoralbio.2012.01.008. [PubMed] [CrossRef] [Google Scholar]

77. Phattarataratip E., Olson B., Broffitt B., Qian F., Brogden K.A., Drake D.R., Levy S.M., Banas J.A. Streptococcus mutans strains recovered from caries-active or caries-free individuals differ in sensitivity to host antimicrobial peptides. Mol. Oral Microbiol. 2011;26:187–199. doi:10.1111/j.2041-1014.2011.00607.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

78. Wong J.H., Ye X.J., Ng T.B. Cathelicidins: Peptides with antimicrobial, immunomodulatory, anti-inflammatory, angiogenic, anticancer and procancer activities. Curr. Protein Pept. Sci. 2013;14:504–514. doi:10.2174/13892037113149990067. [PubMed] [CrossRef] [Google Scholar]

79. Colombo N.H., Ribas L.F.F., Pereira J.A., Kreling P.F., Kressirer C.A., Tanner A.C.R., Duque C. Antimicrobial peptides in saliva of children with severe early childhood caries. Arch. Oral Biol. 2016;69:40–46. doi:10.1016/j.archoralbio.2016.05.009. [PubMed] [CrossRef] [Google Scholar]

80. Goeke J.E., Kist S., Schubert S., Hickel R., Huth K.C., Kollmuss M. Sensitivity of caries pathogens to antimicrobial peptides related to caries risk. Clin. Oral Investig. 2018;22:2519–2525. doi:10.1007/s00784-018-2348-7. [PubMed] [CrossRef] [Google Scholar]

81. Chen Z., Yang G., Lu S., Chen D., Fan S., Xu J., Wu B., He J. Design and antimicrobial activities of LL-37 derivatives inhibiting the formation of Streptococcus mutans biofilm. Chem. Biol. Drug Des. 2019;93:1175–1185. doi:10.1111/cbdd.13419. [PubMed] [CrossRef] [Google Scholar]

82. Darveau R.P. Periodontitis: A polymicrobial disruption of host homeostasis. Nat. Rev. Microbiol. 2010;8:481–490. doi:10.1038/nrmicro2337. [PubMed] [CrossRef] [Google Scholar]

83. Tonetti M.S., Jepsen S., Jin L., Otomo-Corgel J. Impact of the global burden of periodontal diseases on health, nutrition and wellbeing of mankind: A call for global action. J. Clin. Periodontol. 2017;44:456–462. doi:10.1111/jcpe.12732. [PubMed] [CrossRef] [Google Scholar]

84. Machado V., Botelho J., Amaral A., Proença L., Alves R., Rua J., Cavacas M.A., Delgado A.S., Mendes J.J. Prevalence and extent of chronic periodontitis and its risk factors in a Portuguese subpopulation: A retrospective cross-sectional study and analysis of clinical attachment loss. PeerJ. 2018;6:e5258. doi:10.7717/peerj.5258. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

85. Botelho J., Machado V., Proença L., Alves R., Cavacas M.A., Amaro L., Mendes J.J. Study of Periodontal Health in Almada-Seixal (SoPHiAS): A cross-sectional study in the Lisbon Metropolitan Area. Sci. Rep. 2019;9 doi:10.1038/s41598-019-52116-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

86. Buset S.L., Walter C., Friedmann A., Weiger R., Borgnakke W.S., Zitzmann N.U. Are periodontal diseases really silent? A systematic review of their effect on quality of life. J. Clin. Periodontol. 2016;43:333–344. doi:10.1111/jcpe.12517. [PubMed] [CrossRef] [Google Scholar]

87. Botelho J., Machado V., Proença L., Bellini D.H., Chambrone L., Alcoforado G., Mendes J.J. The impact of nonsurgical periodontal treatment on oral health-related quality of life: A systematic review and meta-analysis. Clin. Oral Investig. 2020;24:585–596. doi:10.1007/s00784-019-03188-1. [PubMed] [CrossRef] [Google Scholar]

88. Preshaw P.M., Alba A.L., Herrera D., Jepsen S., Konstantinidis A., Makrilakis K., Taylor R. Periodontitis and diabetes: A two-way relationship Matrix metalloproteinase NHANES National Health and Nutrition Examination Survey. Diabetologia. 2012;55:21–31. doi:10.1007/s00125-011-2342-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

89. Leira Y., Seoane J., Blanco M., Rodríguez-Yáñez M., Takkouche B., Blanco J., Castillo J. Association between periodontitis and ischemic stroke: A systematic review and meta-analysis. Eur. J. Epidemiol. 2017;32:43–53. doi:10.1007/s10654-016-0170-6. [PubMed] [CrossRef] [Google Scholar]

90. Muñoz Aguilera E., Suvan J., Buti J., Czesnikiewicz-Guzik M., Barbosa Ribeiro A., Orlandi M., Guzik T.J., Hingorani A.D., Nart J., D’Aiuto F., et al. Periodontitis is associated with hypertension: A systematic review and meta-analysis. Cardiovasc. Res. 2020;116:28–39. doi:10.1093/cvr/cvz201. [PubMed] [CrossRef] [Google Scholar]

91. Hussain S.B., Botelho J., Machado V., Zehra S.A., Mendes J.J., Ciurtin C., Orlandi M., Aiuto F.D. Is there a bidirectional association between rheumatoid arthritis and periodontitis? A systematic review and meta-analysis. Semin. Arthritis Rheum. 2020 doi:10.1016/j.semarthrit.2020.01.009. [PubMed] [CrossRef] [Google Scholar]

92. Papageorgiou S.N., Hagner M., Nogueira A.V.B., Franke A., Jäger A., Deschner J. Inflammatory bowel disease and oral health: Systematic review and a meta-analysis. J. Clin. Periodontol. 2017;44:382–393. doi:10.1111/jcpe.12698. [PubMed] [CrossRef] [Google Scholar]

93. Botelho J., Machado V., Mascarenhas P., Rua J., Alves R., Cavacas M.A., Delgado A., João Mendes J. Stress, salivary cortisol and periodontitis: A systematic review and meta-analysis of observational studies. Arch. Oral Biol. 2018;96:58–65. doi:10.1016/j.archoralbio.2018.08.016. [PubMed] [CrossRef] [Google Scholar]

94. Machado V., Botelho J., Lopes J., Patrão M., Alves R., Chambrone L., Alcoforado G., Mendes J.J. Periodontitis impact in interleukin-6 serum levels in solid organ transplanted patients: A systematic review and meta-analysis. Diagnostics. 2020;10:184. doi:10.3390/diagnostics10040184. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

95. Manrique-Corredor E.J., Orozco-Beltran D., Lopez-Pineda A., Quesada J.A., Gil-Guillen V.F., Carratala-Munuera C. Maternal periodontitis and preterm birth: Systematic review and meta-analysis. Community Dent. Oral Epidemiol. 2019;47:243–251. doi:10.1111/cdoe.12450. [PubMed] [CrossRef] [Google Scholar]

96. Najeeb S., Zafar M.S., Khurshid Z., Zohaib S., Almas K. The role of nutrition in periodontal health: An update. Nutrients. 2016;8:530. doi:10.3390/nu8090530. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

97. Jagelavičienė E., Vaitkevičienė I., Šilingaitė D., Šinkūnaitė E., Daugėlaitė G. The relationship between vitamin D and periodontal pathology. Medicina. 2018;54:45. doi:10.3390/medicina54030045. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

98. Garcia M.N., Hildebolt C.F., Miley D.D., Dixon D.A., Couture R.A., Anderson Spearie C.L., Langenwalter E.M., Shannon W.D., Deych E., Mueller C., et al. One-year effects of Vitamin D and calcium supplementation on chronic periodontitis. J. Periodontol. 2011;82:25–32. doi:10.1902/jop.2010.100207. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

99. Grant W.B., Boucher B.J. Are hill’s criteria for causality satisfied for vitamin D and periodontal disease? Dermatoendocrinology. 2010;2:30–36. doi:10.4161/derm.2.1.12488. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

100. Stein S.H., Livada R., Tipton D.A. Re-evaluating the role of vitamin D in the periodontium. J. Periodontal Res. 2014;49:545–553. doi:10.1111/jre.12149. [PubMed] [CrossRef] [Google Scholar]

101. Anbarcioglu E., Kirtiloglu T., Öztürk A., Kolbakir F., Acıkgöz G., Colak R. Vitamin D deficiency in patients with aggressive periodontitis. Oral Dis. 2019;25:242–249. doi:10.1111/odi.12968. [PubMed] [CrossRef] [Google Scholar]

102. Agrawal A.A., Kolte A.P., Kolte R.A., Chari S., Gupta M., Pakhmode R. Evaluation and comparison of serum vitamin D and calcium levels in periodontally healthy, chronic gingivitis and chronic periodontitis in patients with and without diabetes mellitus–a cross-sectional study. Acta Odontol. Scand. 2019;77:592–599. doi:10.1080/00016357.2019.1623910. [PubMed] [CrossRef] [Google Scholar]

103. Ebersole J.L., Lambert J., Bush H., Huja P.E., Basu A. Serum nutrient levels and aging effects on periodontitis. Nutrients. 2018;10:1986. doi:10.3390/nu10121986. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

104. Isola G., Alibrandi A., Rapisarda E., Matarese G., Williams R.C., Leonardi R. Association of vitamin D in patients with periodontitis: A cross-sectional study. J. Periodontal Res. 2020:1–11. doi:10.1111/jre.12746. [PubMed] [CrossRef] [Google Scholar]

105. Ketharanathan V., Torgersen G.R., Petrovski B.É., Preus H.R. Radiographic alveolar bone level and levels of serum 25-OH-Vitamin D 3 in ethnic Norwegian and Tamil periodontitis patients and their periodontally healthy controls. BMC Oral Health. 2019;19:83. doi:10.1186/s12903-019-0769-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

106. Costantini E., Sinjari B., Piscopo F., Porreca A., Reale M., Caputi S., Murmura G. Evaluation of salivary cytokines and Vitamin D levels in periodontopathic patients. Int. J. Mol. Sci. 2020;21:2669. doi:10.3390/ijms21082669. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

107. Zhan Y., Samietz S., Holtfreter B., Hannemann A., Meisel P., Nauck M., Volzke H., Wallaschofski H., Dietrich T., Kocher T., et al. Prospective study of serum 25-hydroxy vitamin d and tooth loss. J. Dent. Res. 2014;93:639–644. doi:10.1177/0022034514534985. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

108. Millen A.E., Hovey K.M., LaMonte M.J., Swanson M., Andrews C.A., Kluczynski M.A., Genco R.J., Wactawski-Wende J. Plasma 25-Hydroxyvitamin D concentrations and periodontal disease in postmenopausal women. J. Periodontol. 2013;84:1243–1256. doi:10.1902/jop.2012.120445. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

109. Antonoglou G.N., Knuuttila M., Niemelä O., Raunio T., Karttunen R., Vainio O., Hedberg P., Ylöstalo P., Tervonen T. Low serum level of 1,25(OH)2D is associated with chronic periodontitis. J. Periodontal Res. 2015;50:274–280. doi:10.1111/jre.12207. [PubMed] [CrossRef] [Google Scholar]

110. Meghil M.M., Hutchens L., Raed A., Multani N.A., Rajendran M., Zhu H., Looney S., Elashiry M., Arce R.M., Peaco*ck M.E., et al. The influence of vitamin D supplementation on local and systemic inflammatory markers in periodontitis patients: A pilot study. Oral Dis. 2019;25:1403–1413. doi:10.1111/odi.13097. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

111. Taskan M., Gevrek F. PPAR-γ, RXR, VDR, and COX-2 expressions in gingival tissue samples of healthy individuals, periodontitis and peri-implantitis patients MM. Niger. J. Clin. Pract. 2019;22:46–53. [PubMed] [Google Scholar]

112. Hu X., Niu L., Ma C., Huang Y., Yang X., Shi Y., Pan C., Liu J., Wang H., Li Q., et al. Calcitriol decreases live Porphyromonas gingivalis internalized into epithelial cells and monocytes by promoting autophagy. J. Periodontol. 2019 doi:10.1002/JPER.19-0510. [PubMed] [CrossRef] [Google Scholar]

113. Han J., Cheng C., Zhu Z., Lin M., Zhang D.X., Wang Z.M., Wang S. Vitamin D reduces the serum levels of inflammatory cytokines in rat models of periodontitis and chronic obstructive pulmonary disease. J. Oral Sci. 2019;61:53–60. doi:10.2334/josnusd.17-0357. [PubMed] [CrossRef] [Google Scholar]

114. Li H., Zhong X., Li W., Wang Q. Effects of 1,25-dihydroxyvitamin on experimental periodontitis and ahr/nf-κb/nlrp3 inflammasome pathway in a mouse model. J. Appl. Oral Sci. 2019;27:1–10. doi:10.1590/1678-7757-2018-0713. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

115. Oh C., Kim H.J., Kim H.M. Vitamin D maintains E-cadherin intercellular junctions by downregulating MMP-9 production in human gingival keratinocytes treated by TNF-α J. Periodontal Implant. Sci. 2019;49:270–286. doi:10.5051/jpis.2019.49.5.270. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

116. Wang Q., Zhou X., Zhang P., Zhao P., Nie L., Ji N., Ding Y., Wang Q. 25-Hydroxyvitamin D3 positively regulates periodontal inflammaging via SOCS3/STAT signaling in diabetic mice. Steroids. 2020;156:108570. doi:10.1016/j.steroids.2019.108570. [PubMed] [CrossRef] [Google Scholar]

117. Li H., Li W., Wang Q. 1,25-dihydroxyvitamin D3 suppresses lipopolysaccharide-induced interleukin-6 production through aryl hydrocarbon receptor/nuclear factor-κB signaling in oral epithelial cells. BMC oral health. 2019;19:1–9. doi:10.1186/s12903-019-0935-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

118. Bi C.S., Wang J., Qu H.L., Li X., Tian B.M., Ge S., Chen F.M. Calcitriol suppresses lipopolysaccharide-induced alveolar bone damage in rats by regulating T helper cell subset polarization. J. Periodontal Res. 2019;54:612–623. doi:10.1111/jre.12661. [PubMed] [CrossRef] [Google Scholar]

119. Hong H., Hong A., Wang C., Huang E., Chiang C. Calcitriol exerts a mineralization-inductive effect comparable to that of vitamin C in cultured human periodontium cells. Am. J. Transl. Res. 2019;11:2304–2316. [PMC free article] [PubMed] [Google Scholar]

120. Anand A., Singh S., Sonkar A.A., Husain N., Singh K.R., Singh S., Kushwaha J.K. Expression of Vitamin D receptor and Vitamin D status in patients with oral neoplasms and effect of Vitamin D supplementation on quality of life in advanced cancer treatment. Wspolczesna Onkol. 2017;21:145–151. doi:10.5114/wo.2017.68623. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

121. Yu X., Zong X., Pan Y. Associations between vitamin D receptor genetic variants and periodontitis: A meta-analysis. Acta Odontol. Scand. 2019;77:484–494. doi:10.1080/00016357.2019.1597160. [PubMed] [CrossRef] [Google Scholar]

122. Wan Q.S., Li L., Yang S.K., Liu Z.L., Song N. Role of Vitamin D receptor gene polymorphisms on the susceptibility to periodontitis: A meta-analysis of a controversial issue. Genet. Test. Mol. Biomark. 2019;23:618–633. doi:10.1089/gtmb.2019.0021. [PubMed] [CrossRef] [Google Scholar]

123. Gao W., Tang H., Wang D., Zhou X., Song Y., Wang Z. Effect of short-term vitamin D supplementation after nonsurgical periodontal treatment: A randomized, double-masked, placebo-controlled clinical trial. J. Periodontal Res. 2020:1–9. doi:10.1111/jre.12719. [PubMed] [CrossRef] [Google Scholar]

124. Patil V., Mali R., Moghe A. Evaluation and comparison of Vitamin D receptors in periodontal ligament tissue of Vitamin D-deficient chronic periodontitis patients before and after supplementation of Vitamin D3. J. Indian Soc. Periodontol. 2019;23:100–105. doi:10.4103/jisp.jisp_173_18. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

125. Bashutski J.D., Eber R.M., Kinney J.S., Benavides E., Maitra S., Braun T.M., Giannobile W.V., McCauley L.K. The impact of vitamin D status on periodontal surgery outcomes. J. Dent. Res. 2011;90:1007–1012. doi:10.1177/0022034511407771. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

126. Boggess K.A., Espinola J.A., Moss K., Beck J., Offenbacher S., Camargo C.A., Jr. Vitamin D status and periodontal disease among pregnant women. J. Periodontol. 2011;82:195–200. doi:10.1902/jop.2010.100384. [PubMed] [CrossRef] [Google Scholar]

127. Sablok A., Batra A., Thariani K., Batra A., Bharti R., Aggarwal A.R., Kabi B.C., Chellani H. Supplementation of Vitamin D in pregnancy and its correlation with feto-maternal outcome. Clin. Endocrinol. (Oxf.) 2015;83:536–541. doi:10.1111/cen.12751. [PubMed] [CrossRef] [Google Scholar]

128. Khan F.R., Ahmad T., Hussain R., Bhutta Z.A. A randomized controlled trial of oral Vitamin D supplementation in pregnancy to improve maternal periodontal health and birth weight. J. Int. Oral Health. 2016;8:657–665. [Google Scholar]

129. Khan F., Ahmad T., Hussain R., Bhutta Z. Relationship among Hypovitaminosis D, maternal periodontal disease, and low birth weight. J. Coll. Physicians Surg. Pak. 2018;28:36–39. doi:10.29271/jcpsp.2018.01.36. [PubMed] [CrossRef] [Google Scholar]

130. Sabharwal A., Gomes-Filho I.S., Stellrecht E., Scannapieco F.A. Role of periodontal therapy in management of common complex systemic diseases and conditions: An update. Periodontology 2000. 2018;78:212–226. doi:10.1111/prd.12226. [PubMed] [CrossRef] [Google Scholar]

131. Iheozor-Ejiofor Z., Middleton P., Esposito M., Glenny A.M. Treating periodontal disease for preventing adverse birth outcomes in pregnant women. Cochrane Database Syst. Rev. 2017;2017:CD005297. doi:10.1002/14651858.CD005297.pub3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

132. Albandar J.M., Susin C., Hughes F.J. Manifestations of systemic diseases and conditions that affect the periodontal attachment apparatus: Case definitions and diagnostic considerations. J. Clin. Periodontol. 2018;45:S171–S189. doi:10.1111/jcpe.12947. [PubMed] [CrossRef] [Google Scholar]

133. Wei S.Q., Qi H.P., Luo Z.C., Fraser W.D. Maternal vitamin D status and adverse pregnancy outcomes: A systematic review and meta-analysis. J. Matern. Neonatal Med. 2013;26:889–899. doi:10.3109/14767058.2013.765849. [PubMed] [CrossRef] [Google Scholar]

134. Ziuchkovski J.P., Fields H.W., Johnston W.M., Lindsey D.T. Assessment of perceived orthodontic appliance attractiveness. Am. J. Orthod. Dentofac. Orthop. 2008;133:68–78. doi:10.1016/j.ajodo.2006.07.025. [PubMed] [CrossRef] [Google Scholar]

135. Sarver D.M. Interactions of hard tissues, soft tissues, and growth over time, and their impact on orthodontic diagnosis and treatment planning. Am. J. Orthod. Dentofac. Orthop. 2015;148:380–386. doi:10.1016/j.ajodo.2015.04.030. [PubMed] [CrossRef] [Google Scholar]

136. Kawakami M., Takano-Yamamoto T. Local injection of 1,25-dihydroxyvitamin D3 enhanced bone formation for tooth stabilization after experimental tooth movement in rats. J. Bone Miner. Metab. 2004;22:541–546. doi:10.1007/s00774-004-0521-3. [PubMed] [CrossRef] [Google Scholar]

137. Anderson P.H. Vitamin D activity and metabolism in bone. Curr. Osteoporos. Rep. 2017;15:443–449. doi:10.1007/s11914-017-0394-8. [PubMed] [CrossRef] [Google Scholar]

138. van Driel M., van Leeuwen J.P.T.M. Vitamin D endocrinology of bone mineralization. Mol. Cell. Endocrinol. 2017;453:46–51. doi:10.1016/j.mce.2017.06.008. [PubMed] [CrossRef] [Google Scholar]

139. Meikle M.C. The tissue, cellular, and molecular regulation of orthodontic tooth movement: 100 years after carl sandstedt. Eur. J. Orthod. 2006;28:221–240. doi:10.1093/ejo/cjl001. [PubMed] [CrossRef] [Google Scholar]

140. Davidovitch Z., Finkelson M.D., Steigman S., Shanfeld J.L., Montgomery P.C., Korostoff E. Electric currents, bone remodeling, and orthodontic tooth movement. Am. J. Orthod. Dentofac. Orthop. 1980;77:14–32. doi:10.1016/0002-9416(80)90221-3. [PubMed] [CrossRef] [Google Scholar]

141. Yamasaki K., Shibata Y., Imai S., Tani Y., Shibasaki Y., f*ckuhara T. Clinical application of prostaglandin E 1 (PGE 1 ) upon orthodontic tooth movement. Am. J. Orthod. 1984;85:508–518. doi:10.1016/0002-9416(84)90091-5. [PubMed] [CrossRef] [Google Scholar]

142. Stark T.N.I., Sinclair P.M. Effect of pulsed electromagnetic fields on orthodontic tooth movement. Am. J. Orthod. Dentofac. Orthop. 1987;91:91–104. doi:10.1016/0889-5406(87)90465-3. [PubMed] [CrossRef] [Google Scholar]

143. Boyce R.W., Weisbrode S.E. Histogenesis of hyperosteoidosis in 1,25(OH)2D3-treated rats fed high levels of dietary calcium. Bone. 1985;6:105–112. doi:10.1016/8756-3282(85)90314-X. [PubMed] [CrossRef] [Google Scholar]

144. Kale S., Kocadereli I., Atilla P., Aşan E. Comparison of the effects of 1,25 dihydroxycholecalciferol and prostaglandin E2 on orthodontic tooth movement. Am. J. Orthod. Dentofac. Orthop. 2004;125:607–614. doi:10.1016/j.ajodo.2003.06.002. [PubMed] [CrossRef] [Google Scholar]

145. Collins M.K., Sinclair P.M. The local use of vitamin D to increase the rate of orthodontic tooth movement. Am. J. Orthod. Dentofac. Orthop. 1988;94:278–284. doi:10.1016/0889-5406(88)90052-2. [PubMed] [CrossRef] [Google Scholar]

146. Lipworth L., Rossi M., McLaughlin J.K., Negri E., Talamini R., Levi F., Franceschi S., La Vecchia C. Dietary vitamin D and cancers of the oral cavity and esophagus. Ann. Oncol. 2009;20:1576–1581. doi:10.1093/annonc/mdp036. [PubMed] [CrossRef] [Google Scholar]

147. Lehrer S., Montazem A., Ramanathan L., Pessin-Minsley M., Pfail J., Stock R.G., Kogan R. Normal serum bone markers in bisphosphonate-induced osteonecrosis of the jaws. Oral Surgery Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2008;106:389–391. doi:10.1016/j.tripleo.2008.01.033. [PubMed] [CrossRef] [Google Scholar]

148. Bedogni A., Bettini G., Bedogni G., Basso D., Gatti D., Valisena S., Brunello A., Sorio M., Berno T., Giannini S., et al. Is vitamin D deficiency a risk factor for osteonecrosis of the jaw in patients with cancer? A matched case–control study. J. Cranio-Maxillofac. Surg. 2019;47:1203–1208. doi:10.1016/j.jcms.2019.03.007. [PubMed] [CrossRef] [Google Scholar]

149. Heim N., Warwas F.B., Wilms C.T., Reich R.H., Martini M. Vitamin D (25-OHD) deficiency may increase the prevalence of medication-related osteonecrosis of the jaw. J. Cranio-Maxillofac. Surg. 2017;45:2068–2074. doi:10.1016/j.jcms.2017.09.015. [PubMed] [CrossRef] [Google Scholar]

150. Lowe L.C., Guy M., Mansi J.L., Peckitt C., Bliss J., Wilson R.G., Colston K.W. Plasma 25-hydroxy vitamin D concentrations, vitamin D receptor genotype and breast cancer risk in a UK Caucasian population. Eur. J. Cancer. 2005;41:1164–1169. doi:10.1016/j.ejca.2005.01.017. [PubMed] [CrossRef] [Google Scholar]

151. Badros A., Goloubeva O., Evangelos T., Todd M., Maria R.B., Elizabeth S. Prevalence and significance of vitamin D deficiency in multiple myeloma patients. Br. J. Haematol. 2008;142:492–494. doi:10.1111/j.1365-2141.2008.07214.x. [PubMed] [CrossRef] [Google Scholar]

152. Sugimoto T., Matsumoto T., Hosoi T., Miki T., Gorai I., Yoshikawa H., Tanaka Y., Tanaka S., f*ckunaga M., Sone T., et al. Three-year denosumab treatment in postmenopausal Japanese women and men with osteoporosis: Results from a 1-year open-label extension of the Denosumab Fracture Intervention Randomized Placebo Controlled Trial (DIRECT) Osteoporos. Int. 2014;26:765–774. doi:10.1007/s00198-014-2964-2. [PubMed] [CrossRef] [Google Scholar]

153. Demircan S., Isler S. Changes in serological bone turnover markers in bisphosphonate induced osteonecrosis of the jaws: A case control study. Niger. J. Clin. Pract. 2020;23:154–158. [PubMed] [Google Scholar]

154. Danila M.I., Outman R.C., Rahn E.J., Mudano A.S., Redden D.T., Li P., Allison J.J., Anderson F.A., Wyman A., Greenspan S.L., et al. Evaluation of a multimodal, direct-to-patient educational intervention targeting barriers to osteoporosis care: A randomized clinical trial. J. Bone Miner. Res. 2018;33:763–772. doi:10.1002/jbmr.3395. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Vitamin D Deficiency and Oral Health: A Comprehensive Review (2024)

FAQs

Can vitamin D deficiency affect your oral health? ›

Because vitamin D helps your body absorb calcium, it's essential for healthy teeth and gums. Researchers have linked a vitamin D deficiency to two main oral issues: Tooth Decay. As stated before, vitamin D plays a key role in absorbing and retaining calcium and phosphorous for bone and tooth mineralization.

How much vitamin D do you need to take to correct a deficiency? ›

Vitamin D Deficiency Treatment

For infants and babies: 400 international units (IU) a day. For children and teens aged 1-18 years: 600 IU a day. For adults aged 19-70 years: 600 IU a day.

How long does it take to correct a vitamin D deficiency with supplements? ›

“Adding an over-the-counter vitamin D supplement can make improvements in just three to four months. Vitamin D with a strength of 1000-2000 international units daily is the recommended dose for most adults,” Dr. Ropte says.

What's the worst that can happen with low vitamin D? ›

When vitamin D levels are low and the body isn't able to properly absorb calcium and phosphorus, there is an increased risk of bone pain, bone fractures, muscle pain, and muscle weakness. In older adults, severe vitamin D deficiency (levels less than 10 ng/mL) may also contribute to an increased risk of falls.

Can vitamin D reverse gum disease? ›

Vitamin D helps lower the risk of developing periodontitis and helps improve the condition in current sufferers, by maintaining oral health and by exerting anti-inflammatory effects caused by bacteria.

Can vitamin D deficiency cause gum inflammation? ›

In this case, vitamin D deficiency has been attributed as one of the etiological factors for gingival enlargement. The response of the vitamin D supplement has proven to have a positive correlation with decreased probing pocket depth from 5 mm to 3 mm, inflammation, and gingival enlargement.

Can I take 5000 IU of vitamin D3 every day? ›

Some people may need a higher dose, however, including those with a bone health disorder and those with a condition that interferes with the absorption of vitamin D or calcium, says Dr. Manson. Unless your doctor recommends it, avoid taking more than 4,000 IU per day, which is considered the safe upper limit.

How can I raise my vitamin D level quickly? ›

Here are three ways to increase your intake:
  1. Eat foods high in vitamin D, like fish or fortified breakfast foods (milk, cereals and orange juice).
  2. Get vitamin D from moderate sunlight exposure each day.
  3. Take a vitamin D3 supplement or cod liver oil.
Jul 19, 2022

Can low vitamin D cause weight gain? ›

Having inadequate levels of vitamin D may correlate with unintentional weight gain. A study on women over the age of 65 found that participants with a lower vitamin D level experienced more weight gain. A systematic review of 23 different studies found similar associations between vitamin D deficiency and obesity.

What blocks vitamin D absorption? ›

Cystic fibrosis, Crohn's disease and celiac disease: These conditions can prevent your intestines from adequately absorbing enough vitamin D through supplements, especially if the condition is untreated. Obesity: A body mass index greater than 30 is associated with lower vitamin D levels.

What depletes vitamin D? ›

You can become deficient in vitamin D for different reasons: You don't get enough vitamin D in your diet. You don't absorb enough vitamin D from food (a malabsorption problem) You don't get enough exposure to sunlight.

When to take vitamin D, morning or night? ›

Try taking it alongside breakfast or with a bedtime snack — as long as it doesn't interfere with your sleep. The key is to find what works for you and stick with it to ensure you're meeting your vitamin D needs. Taking vitamin D with a meal can increase its absorption, but studies on specific timing are limited.

What are the neurological symptoms of vitamin D deficiency? ›

Various studies have shown an association between vitamin D deficiency and neurodegenerative conditions like dementia (loss of memory), cognitive decline (loss of the ability to think critically) in the elderly, Parkinson's disease, and Alzheimer's disease.

How soon will I feel better after taking vitamin D 50000 IU? ›

In general, some individuals may start to notice improvements in their Vitamin D levels within a few weeks of starting supplementation, while for others, it may take a bit longer. It's essential to be patient and consistent with your supplement regimen to allow your body to absorb and utilize Vitamin D effectively.

Can low vitamin D mess with your stomach? ›

Vitamin D deficiency has been proven to result in severe dysfunctions of the intestinal barrier [32], mucosal damage [33] and increased susceptibility to infectious agents, thus altering the development and maintenance of gut homeostasis [34].

Can vitamin deficiency cause mouth problems? ›

For instance, canker sores, a type of mouth ulcer, are often the result of deficiencies in iron or B vitamins. In a small older study, around 28% of patients with recurring mouth ulcers had deficiencies in thiamine (vitamin B1), riboflavin (vitamin B2), pyridoxine (vitamin B6) or a combination of the vitamins.

How does vitamin deficiency affect mouth? ›

A lower intake of vitamin A has been associated with decreased oral epithelial development, impaired tooth formation, enamel hypoplasia and periodontitis. Vitamin D deficiency during tooth development may result in non-syndromic amelogenesis and dentinogenesis imperfecta, enamel and dentin hypoplasia, and dysplasia.

Can vitamin deficiency cause teeth problems? ›

Because our teeth are made of bones, it is logical that the amount of vitamin D one consumes is important for their oral health. Lack of vitamin D can lead to dental caries, and weak or brittle teeth that easily break, chip, and crack.

Can vitamin D deficiency cause gum recession? ›

Vitamin D. A study in Australia found a direct link between vitamin D deficiency and inflammation. Inflammation is the body's way of protecting the tissues when injured or infected (4). Chronic inflammation of the gums results in the inflammation and destruction of bone and ligaments and subsequently gum recession.

References

Top Articles
Latest Posts
Article information

Author: Msgr. Refugio Daniel

Last Updated:

Views: 6471

Rating: 4.3 / 5 (54 voted)

Reviews: 93% of readers found this page helpful

Author information

Name: Msgr. Refugio Daniel

Birthday: 1999-09-15

Address: 8416 Beatty Center, Derekfort, VA 72092-0500

Phone: +6838967160603

Job: Mining Executive

Hobby: Woodworking, Knitting, Fishing, Coffee roasting, Kayaking, Horseback riding, Kite flying

Introduction: My name is Msgr. Refugio Daniel, I am a fine, precious, encouraging, calm, glamorous, vivacious, friendly person who loves writing and wants to share my knowledge and understanding with you.