E=mc2: What Does Einstein’s Most Famous Equation Mean? (2024)

It is perhaps the most famous equation in the world, and also one of the most elegant. Einstein’s legendary equivalence between mass and energy, given the simple formula E=mc^2, is familiar even to schoolchildren.

At times, it simply stands as a placeholder for science — like in cartoons where writing E=mc^2 on a chalkboard signifies there’s some serious physics going on. But the relationship Einstein’s equation alludes to underlies fundamental properties of the universe itself. Mass is energy, energy is mass; the equation builds a bridge between two seemingly disparate domains.

The physics underpinning the equation are appropriately heady and complex. But for the rest of us, the significance of Einstein’s formula boils down largely to one thing: There’s a huge amount of energy bound inside the matter surrounding us. The equation equates the energy of a body in its rest frame, the E on the left-hand side of the formula, to an object’s mass multiplied by the speed of light squared.

As you probably already know, the speed of light is very fast. Photons zip along at around 300,000,000 meters per second (or around 186,000 miles per second). Now multiply that by itself, or square it, and the number gets astoundingly large. The speed of light squared is 8.98755179 × 10^16 m^2/s^2 (That’s 8.9 with 16 zeros behind it.)

A common misconception surrounding Einstein’s formula is that mass can be converted into energy. That’s not actually quite true, nor is it what Einstein meant when he set down his revolutionary idea. Instead, his equation shows that a change in the mass of an object requires a change in its energy. It’s the reason why the end products of nuclear reactions together weigh less than their parent atoms. When protons and neutrons split off from atoms during nuclear fission, they release energy. And as we know from Einstein, that’s equivalent to mass.

It’s easy to see that even tiny amounts of matter represent very large amounts of energy. Humans got a taste of that frightful energy when we invented the atomic bomb. The enormous amount of energy released by the Little Boy nuclear weapon was equivalent to the mass of less than a gram of its radioactive fuel. That’s less than half the weight of a dime.

You don’t need an atomic weapon to turn mass into energy, of course. You extract energy from matter every time you light a candle (though the mechanism there is a chemical reaction, rather than a nuclear one.) But the light and heat that comes from a candle is but a sliver of the energy contained within. A single candle might light up a romantic dinner, but the energy equivalent to all of the mass inside would be sufficient to level an entire city.

The Photon Paradox

Though the energy-mass equation might appear simple, there are some special cases that appear to challenge its assumptions. Take the case of photons, for example. These particles, which represent packets of light, have zero mass, but still contain energy. Taking Einstein’s equation at face value, that appears to be impossible. If mc^2 is zero, then E must be zero as well. But we know that’s not the case.

The paradox is resolved with a slightly expanded, lesser-known version of the equation. This formulation adds in momentum, or p, and also multiplies it by the speed of light. Written out, the equation is: E^2=p^2c^2 + m^2c^4. In the case of a photon, for which m=0, the equation boils down to E=pc. Because photons move at the speed of light regardless of where we view them from, they have momentum, and therefore energy. It’s a result that’s borne out by experiments in particle physics, which return results that are only consistent if the energy-mass-momentum equation holds true for photons.

The Power of an Equal Sign

Setting E equal to mc^2 enabled the most powerful and influential physics of the 20th century. But it was also a kind of logical leap for the field of physics. Prior to Einstein’s work, scientists viewed energy and mass as two entirely separate things. Energy, whether as light, heat or other forms was its own category, and mass, something held by all matter, was another. Though mass and energy could interact with each other, there was never an equivalence between them.

But with two simple strokes of a pen, Einstein set mass equal to energy, metaphorically destroying the wall between the two. Seen in this light, it’s possible to understand that objects with more mass also have more energy, and that adding (or subtracting) mass also changes the amount of energy it represents.

Einstein’s equation prefaced not only the atomic bomb, but to other ways of harnessing nuclear energy as well. Nuclear power plants today utilize the same fundamental scientific principles as nuclear weapons. Small nuclear “batteries” power the Voyager spacecraft — still running after more than four decades — and larger-scale nuclear powerplants could one day provide energy to lunar astronauts. And should humanity ever crack the daunting scientific challenge of sustaining nuclear fusion, we’ll again have Einstein’s work to thank.

E=mc2: What Does Einstein’s Most Famous Equation Mean? (2024)

FAQs

E=mc2: What Does Einstein’s Most Famous Equation Mean? ›

Einstein went on to present his findings mathematically: energy (E) equals mass (m) times the speed of light (c) squared (2), or E=mc2. The secret the equation revealed—that mass and energy are different forms of the same thing—had eluded scientists for centuries.

What is Einstein's famous equation What does it mean? ›

E = mc2. It's the world's most famous equation, but what does it really mean? "Energy equals mass times the speed of light squared." On the most basic level, the equation says that energy and mass (matter) are interchangeable; they are different forms of the same thing.

How is Einstein's famous equation? ›

Special relativity revealed that the speed of light is a limit that can be approached but not reached by any material object. It is the origin of the most famous equation in science, E = mc2, which expresses the fact that mass and energy are the same physical entity and can be changed into each other.

What does the c in Einstein's famous equation of E mc2 stand for? ›

In the equation, E = m c2, E stands for energy, m stands for an object's mass, and c2 represents the speed of light ( 186,000 miles per second ) multiplied by itself.

Why is Albert Einstein famous for E mc2? ›

The implications of E=mc2 are profound. For centuries, scientists had considered energy and mass to be completely distinct and unrelated to each other. Einstein showed that in fact, energy and mass are different forms of the same thing.

What is the Einstein equation and explain the terms? ›

Einsteins photoelectric equation K.E. of photo electron = incident energy of photons - Work functionwhere v0 is called threshold frequency. i Threshold Frequency : For a given metal there exists a certain minimum frequency of the incident radiation below which no emission of photo electrons takes place.

What is the full equation for E MC2? ›

It just describes objects that have mass and that aren't moving. The full equation is E squared equals mc squared squared plus p times c squared, where p represents the momentum of the object in question.

Is e-mc2 proven? ›

Yes. When mass and speed of light squared are multiplied, they give the same unit as that of energy – Joules. Thus, E=mc2 is dimensionally correct.

Does e-mc2 apply to everything? ›

The term pc represents the kinetic energy of an object, which means the familiar E = mc2 is only exactly true for objects at rest or in the same rest frame, where the momentum p is zero. That's why the mass (m) in the equation is also referred to as rest mass.

Why is e-mc2 wrong? ›

“Einstein mass–energy equivalence equation E=mc2 is wrong because does not contains Dark Matter”. Einstein in 1905 did not formulate exactly the equation E=mc2 but he said: 'if a body gives off the energy L in the form of radiation, its mass diminishes by L/c2'.

Can E-mc2 be used on humans? ›

I was wondering if E=MC2 or other equations could be used to measure a fighters potential, not their resting energy but their max capability for single or short bursts of action . No, e=mc2 is not applicable to chemical reactions, which is what powers animal muscles.

How to explain e-mc2 to a child? ›

When mass transforms into energy, the amount of energy also does not remain the same. However, the amount of matter and energy remains the same. Energy turns into mass and mass turns into energy in a way that is defined by Einstein's equation, E = mc2.

What was Albert Einstein's IQ? ›

Most theorists peg Einstein's IQ score between 160-190. Because he never took any kind of test to measure his intelligence, the definite score is still a mystery. But without a doubt, he was a brilliant man with an incredible brain.

What is Einstein's equation for gravity? ›

Gμν = 8πTμν On the left side of the equation is a tensor describing the geometry of spacetime — the gravitational field. On the right is the tensor describing the matter and energy density — the source of the gravitational field.

What do Einstein's field equations mean? ›

What Does It Mean? The Einstein Field Equations are ten equations, contained in the tensor equation shown above, which describe gravity as a result of spacetime being curved by mass and energy.

What equation is known as Einstein's big idea? ›

Over 100 years ago, Albert Einstein grappled with the implications of his revolutionary special theory of relativity and came to a startling conclusion: mass and energy are one, related by the formula E = mc2. In "Einstein's Big Idea," NOVA dramatizes the remarkable story behind this equation.

What is e-MC2 used for in real life? ›

It shows that matter and energy are the same thing — as long as the matter travels at the speed of light squared. The latter is an enormous number and shows just how much energy there is in even tiny amounts of matter. That's why a small amount of uranium or plutonium can produce such a massive atomic explosion.

What is Einstein's theory of relativity in simple terms? ›

Einstein's revelation was that observers in relative motion experience time differently: it's perfectly possible for two events to happen simultaneously from the perspective of one observer, yet happen at different times from the perspective of the other. And both observers would be right.

References

Top Articles
Latest Posts
Article information

Author: Twana Towne Ret

Last Updated:

Views: 5676

Rating: 4.3 / 5 (64 voted)

Reviews: 87% of readers found this page helpful

Author information

Name: Twana Towne Ret

Birthday: 1994-03-19

Address: Apt. 990 97439 Corwin Motorway, Port Eliseoburgh, NM 99144-2618

Phone: +5958753152963

Job: National Specialist

Hobby: Kayaking, Photography, Skydiving, Embroidery, Leather crafting, Orienteering, Cooking

Introduction: My name is Twana Towne Ret, I am a famous, talented, joyous, perfect, powerful, inquisitive, lovely person who loves writing and wants to share my knowledge and understanding with you.